

FOUR YEARS UNDERGRADUATE PROGRAM (2024 – 28)
DEPARTMENT OF PHYSICS
COURSE CURRICULUM

PART – A: INTRODUCTION		
Program: Bachelor in Science (Diploma/ Degree/ Honors)		Semester: III
1	Course Code	PHSC- 03P
2	Course Title	Heat and Thermodynamics
3	Course Type	Discipline Core Course
4	Pre-requisite (if any)	As per Program
5	Course Learning Outcomes (CLO)	<ul style="list-style-type: none"> ➤ Lab Proficiency: Thermometers, pressure gauges, calorimeters, heat transfer apparatus, experimental setup, data acquisition. ➤ Hands-on Learning**: Heat transfer, work done, entropy, phase transitions, experiments. ➤ Data Analysis: Experimental data, theoretical discrepancies, analysis. ➤ Predictive Skills: Thermodynamic behavior, varying conditions, experimentation. ➤ Theory-Practice Integration: Theoretical knowledge, practical lab work, synthesis, applications.
6	Credit Value	01 Credit 1 Credit = 30 Hours Laboratory Work
7	Total Marks	Maximum Marks: 50 Minimum Pass Marks: 20

PART – B: CONTENT OF THE COURSE

Total No. of learning-Training/performance Periods -30 Periods (30 Hours)		
Sr. No.	Objects (At least 10 of the following or related Experiments)	No. of Periods
1	To determine the thermal conductivity of a non-conducting material by Lee's disc method.	30
2	To study the variation of thermo emf across two junctions of a thermocouple with temperature.	
3	To verify Newton's law of cooling.	
4	To determine the temperature co-efficient of resistance by Platinum resistance thermometer.	
5	To determine the coefficient of thermal conductivity(k) of a rubber tube.	
6	To study the heat efficiency of an electric kettle with varying voltage.	
7	To determine the ratio of specific heat at constant pressure and constant volume ($\gamma = C_p/C_v$) of air Clement and Desorme's method.	
8	To determine the coefficient of thermal conductivity of copper by Searle's Apparatus.	
9	To study the variation of thermos-Emf of thermos couple with Difference of Temperature of its Two Junctions.	
10	To determine Mechanical Equivalent of Heat, J , by Callender and Barne's constant flow method.	
11	Measurement of Planck's constant using black body radiation.	
12	To determine Stefan's Constant.	
Keywords:	Thermal conductivity, Thermocouple, Newton's law of cooling, Temperature coefficient of resistance, Heat efficiency, Specific heat ratio, Mechanical equivalent of heat, Planck's constant	

Signature of Convener & Members (CBoS):

PART – C: LEARNING RESOURCES

Text Books, Reference Books and Others

Text Books Recommended-

1. Advanced Practical Physics for students, B.L.Flint&H.T.Worsnop, 1971, Asia Publishing House.
2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
3. A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition, 2011, Kitab Mahal, New Delhi.
4. A Laboratory Manual of Physics for Undergraduate Classes, D.P. Khandelwal, 1985, Vani Publication.
5. Unified Practical Physics B.Sc II : R P Goyal, Shivlal Agrawal & Sons Publications

Reference Books Recommended-

1. Practical Physics by C.L. Arora
2. Practical Physics by S.L. Gupta and Vijay Kumar
3. Advanced Practical Physics for Students by B.L. Worsnop and H.T. Flint

Online Resources (e-books/ learning portals/ other e-resources)

Link for e-Books for Physics Practical and Virtual labs

1. Thermal Physics and Statistical Mechanics: Laboratory Collection <https://egyankosh.ac.in/handle/123456789/67450>
2. Virtual Lab : <https://vlab.amrita.edu/index.php?sub=1&brch=194>
3. <https://vlab.amrita.edu/index.php?sub=1&brch=194&sim=802&cnt=1>
4. <https://vlab.amrita.edu/index.php?sub=1&brch=194&sim=801&cnt=4>
5. <https://srmap.edu.in/seas/physics-virtual-lab/>
6. <https://sites.google.com/view/vlab-bnmmitmech/home/heat-transfer-lab>
<https://www.pbslearningmedia.org/resource/lsp07-sci-phys-thermalenergy/thermal-energy-transfer/#.WdJiQJrLIU>

PART - D: ASSESSMENT AND EVALUATION

Suggested Continuous Evaluation Methods:

Maximum Marks: 50 Marks

Continuous Internal Assessment(CIA):15 Marks

EndSemester Exam(ESE):35 Marks

Continuous Internal Assessment (CIA): (By Course Teacher)	Internal Test / Quiz-(2): 10 & 10 Assignment/Seminar +Attendance -05 Total Marks - 15	Better marks out of the two Test / Quiz +Marks obtained in Assignment shall be considered against 15 Marks
End Semester Exam (ESE):	Laboratory Performance: On spot Assessment Performed the Task based on lab. work - 20 Marks Spotting based on tools & technology (written) – 10 Marks Viva-voce (based on principle/technology) - 05 Marks	Managed by Course teacher as per lab. status

Name and Signature of Convener & Members of CBoS:

~~26~~ 26
Sept 10 1961